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Inversion of the 
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It is shown that, on the basis of some weak assumptions regarding the nature 
of the intermolecular pair potential, the classical second virial coefficient 
determines the potential uniquely. 

KEY W O R D S :  Inverse problem; intermolecular potential; second virial 
coefficient; Laplace transform in statistical mechanics; temperature depen- 
dence of second virial coefficient. 

A problem o f  recent interest 11-3) has been that  o f  determining the inter- 
molecular potential f rom the second virial coefficient, 

oo 

B(~)  = - -2rr  f [e -e~r - -  1] r 2 dr 
0 

(1) 

where 13 = 1 / k T  and 9(r)  is the spherically symmetric and pairwise additive 
intermolecular potential. Keller and Zumino  ~1~ stated that  if 9(r)  is analytic, 
then q) is uniquely determined by B(/3). In  this note, we demonstrate  the 
following theorem: 
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T h e o r e m .  Let  the following hold: 

(a) cp(r) is analytic (and real-valued) for  r > O; 
(b) qo(r) = O(r-Z-'), E > 0, as r --~ oe; 
(c) ~(r) 1" oo as r ~ 0. 

Then B(~) given by Eq. (1) determines q)(r) uniquely [subject to (a)-(c)]. 

Proof. We note  first that  (b) and (c) ensure the existence of  the integral 
in (1) "a t  bo th  ends." Next,  integration by parts gives 

co 

e-~)r3q~'(r)dr (2) 3B(/3)/2~v/3 -= 
0 

Now, let  0 = r o  < r ~  < r 2  < ' " - - ~ o %  where q~(r) is decreasing on 
(r2j, r~5+a) and increasing on (r~-+l, r2~.+~), j - -  0, 1, 2,.... (The argument is 
essentially the same and even easier if there are only finitely many such rj .) 
Then 

3B(fl)/2~r/3 = e-~(r)r3~' (r ) dr 
5=0 rj 

= ~ fii+le-~[cp-[Z(s)]3ds 
5=0 

where s~- = (p(r~.) and qo71(s) is the function inverse to ~o(r) for  rj < r < r~+x, 
j = 0, 1, 2,.... It  follows that  

oo 

3B(/3)/27r/3 = f e-e"F(s) ds, t3 > 0 (3) 

where for any s =~ 0, 

r(s) -- -- E [(~;t(s)] z -t- E [~t+l(s)] a (4) 
82j+l<S<S2j s2j+l<8<S2j+2 

[Note that  since sj -+ 0 as j --~ 0% each s ~ 0 belongs to only finitely many 
intervals (s2j+l, s2j) or (s2j+l, s2j+2). Thus each of  the two sums in (4)is  a 
finite sum. Also if s < infs~0(s~-), then both  sums are vacuous and F(s) is 
unders tood to equal 0. The values of  F(s) for  s = si ( j  = 0, 1, 2,...) or 
s = 0 are of  course irrelevant. Finally, the above interchange of  summation 
and integration can be justified by an argument  based upon (b) and Lebesgue's 
dominated convergence theorem.] I f  s > supj>z(sj), Eq. (4) reduces to 

F(s) = - [ ~ o l ( S ) p ,  (s > sup s3 (5) 
J>~l 
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Let us now suppose that ~(r) can be replaced by another function ~b(r) in 
(a)-(c) and Eq. (1). Then, by Eq. (3), 

j _0o e-B~F(s) ds = _o~ e-e~G(s) ds (~ > O) 

where G(s) corresponds to ~b(r) as F(s)  corresponds to 9(r) in Eq. (4). By the 
uniqueness theorem for (bilateral) Laplace transforms, F(s)  = G(s) for almost 
all s (and therefore for all s where both functions are continuous). Therefore 
(5) implies that %1(s) = ~bol(s) for all s in some neighborhood of  oe. Thus 
9(r) = ~b(r) for all r in some right neighborhood of 0. By the analyticity 
assumption (a), we conclude that ~b(r) = 9(r) for all r > 0, as required. 

As an example of the inversion process, we treat a reduced Lennard- 
Jones m - n  potential 

~p(r) = 4(r -m -- r - '0 ;  m, n >~ 4, m > n 

for which 

B,~_,~(/3) = --(3/m) ~ (4/3)tl~-~l~+3v~F([jn -- 3]/m)/j! 

(6) 

(7) 
j=O 

The Laplace inversion is carried out using the Hankel contour integral (~) 
formula, with the result 

r3(~) = --(3/m) ~ (llj!)(41q~) [(~-n~+3]l~ 
j=0 

• l"([jn - -  3] lm) lF(m - -  3 - -  [in - -  n ] j m )  (8) 

An iterative solution of Eq. (6) for rZ(qo) yields the same series expression. 
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